Spectroscopic properties of Mn$^{2+}$ in new bismuth and lead contained fluorophosphate glasses

Received: 11 August 2003 / Revised version: 17 November 2003 / Published online: 3 February 2004 © Springer-Verlag 2004

Abstract

Luminescence, absorption and electron spin resonance (ESR) spectroscopic measurements are performed for two new Mn$^{2+}$ doped fluorophosphate glass systems containing bismuth and lead, respectively, i.e., 45Ba(PO$_3$)$_2$-55Bf$_2$O$_3$ and 45Ba(PO$_3$)$_2$-55PbF$_2$, to elucidate the nature of dopant–ligand bonding in terms of the covalence degree of dopant–ligand bond and ligand field strength. It is found from luminescence measurements that an octahedral coordination of dopant is formed, which is the same as that in fluoroberyllate and phosphate glasses. The optical absorption measurements indicate that the position of the absorption band, λ_{abs}, is red shifted, and the Racah coefficient B is 625 and 637 cm$^{-1}$, respectively, as ligand field strength increases in the order of fluoroberyllate, fluorophosphate, phosphate and silicate glasses. The B constant A determined from the ESR measurements is 94.3 and 92.12cm^{-1} for two glass systems, respectively. The A constant A is also found to be 89.98 and 94.33cm^{-1} in the respective crystalline and glasses 45P$_2$O$_5$-55Bf$_2$O$_3$. In addition, the transition observed at $g \approx 2$ in both glass systems is mainly attributed to Mn$^{2+}$ ions in an environment close to octahedral symmetry distorted by agglomeration of resonant centers. It has been concluded from the ESR measurements that the degree of covalency of dopant–ligand bond in both fluoroberyllate and phosphate glasses is similar, and the crystallization of the glass leads to an increase in the degree of covalency of the ligand–Mn$^{2+}$ bond.

PACS: 42.70.Ce; 61.43.Fx; 78.55.Qr

I Introduction

Glass host materials for active elements are essential for the laser and amplifier application [1–3]. Among many potential laser host materials, fluorophosphate glasses are of importance because of their potential for hostig a relatively large amount of rare earth dopants without clustering, their relatively low phonon energy, relatively low nonlinear refractive index, and relatively high transmission range up to mid IR [4–6]. In addition to laser application, fluorophosphate glasses show great potential in communication and monitoring applications in spaceborne systems and nuclear environments. It has been well known that electronic or photonic components may suffer from exposure to various radiation fields. Fluorophosphate glasses have received great attention for radiation resistant candidates owing to their high electron negativeness of fluoride and reverse change of valency of d^0 and f^1 elements [7]. Moreover, fluorophosphate glasses containing lead or bismuth show extremely high radiative resistance because of the high density and atomic number. Thus, fluorophosphate glasses containing heavy meta’s, which are able to absorb radioactive irradiation, can be used to first radioactive waste as well as to produce radiation resistant optical devices.

For all possible technical applications of fluorophosphate glasses doped with rare earth dopants, an understanding of dopant–ligand bonding must be achieved. Spectroscopic probe ions, including Mn$^{2+}$ ion [8–13], are frequently used to evaluate the degree of covalency of dopant–ligand bond, the strength of ligand field, the coordination state of dopants, and regularity of glass microstructure surrounding Mn$^{2+}$ ion. ESR spectroscopy can be used for detecting Mn$^{2+}$ ions and for investigating the microstructural environment surrounding those ions because 3d ions are more influenced by their environment than 4f ions.

The purpose of this paper is to report for the first time the nature of dopant–ligand bonding in 45Ba(PO$_3$)$_2$-55Bf$_2$O$_3$ and 45Ba(PO$_3$)$_2$-55PbF$_2$O$_3$ glasses. The heavy metal fluorophosphate glasses containing high concentrations of bismuth and lead up to 55 mol% are synthesized. Spectroscopic properties, including luminescence, absorption and the ESR spectra of Mn$^{2+}$ ions, are obtained in the lead- and bismuth-fluorophosphate glasses. The spectroscopic results are compared with those obtained from other host glasses. In addition, the crystallization effect on the bond of covalency between d^0 ligand and Mn$^{2+}$ ions is also investigated by comparing the ESR spectra of Mn$^{2+}$ in both crystalline 45P$_2$O$_5$-55Bf$_2$O$_3$ and glassy 45P$_2$O$_5$-55Bf$_2$O$_3$ systems.

2 Experimental procedure

The starting materials used in this work were Ba(PO$_3$)$_2$, BiF$_3$, and PbF$_2$ with 99.5% purity. All batch materials were weighed according to batch composition of 45Ba(PO$_3$)$_2$-55Bf$_2$O$_3$ and 45Ba(PO$_3$)$_2$-55PbF$_2$O$_3$ (mol%) and
prepared by the standard method. The dopant was introduced into the batch compositions in the form of MnF$_2$. The amount of Mn$^{2+}$ ion in the batch compositions ranged from 0.5 to 15 weight percent. The mixed batch materials were loaded in vitreous carbon crucibles and melted under an Ar atmosphere at 1300–1350 °C for 6 h. The resulting glasses were cut and annealed at 600–350 °C for 10–15 h to remove internal stress.

The luminescence spectra of glasses, doped with MnF$_2$, were recorded up to 900 nm. The wavelength of pumping source for the luminescence measurement was 436 nm. The source of excitation was mercury lamp. Absorption and luminescence spectra were recorded at 295 K using a spectrophotometer (Spexord), operating in the regions of 200 to 790 nm and 550 to 800 nm, respectively. The ESR spectra of the glasses, at 2-8 K, were recorded on a radioscopemeter (Karl Zeiss ERS-9) which had a working frequency of 9370 MHz.

3 Results and discussions

3.1 Luminescence properties

The color of luminescence changes from yellow to dark red as MnF$_2$ concentration increases in both the 5BaB$_2$O$_4$–5BiF$_3$ and 45BaB$_2$O$_4$–55PbF$_2$ glass systems. Figure 1 shows the luminescence spectra of Mn$^{2+}$ ions in 45BaB$_2$O$_4$–55BiF$_3$ glasses as Mn$^{2+}$ ion concentration increases. The peak position is approximately 60 nm when the MnF$_2$ concentration is 0.5 wt. % and 720 nm when MnF$_2$ concentration is 15 wt. %. The luminescence spectra of Mn$^{2+}$ ion in 45BaB$_2$O$_4$–55PbF$_2$ glasses are recorded in Fig. 2. The luminescence peak moves from 650 nm to 720 nm, respectively when MnF$_2$ concentration increased from 0.5 and to 15 wt. %.

Changes in dopant–ligand bonds are a main factor affecting luminescence. Luminescence spectra of the bisnith and lead containing fluorophosphate glasses show similarity in comparison with the spectra of fluoroborate [14] and phosphate [13] glasses. Phosphorus in fluorophosphate and phosphate glasses has a relatively stronger bonding to the oxygen or fluorine than the silicon in silicate glasses. Phosphorus has a relatively larger nuclear charge and it forms five covalent bonds as compared to four covalent bonds in silicon. Phosphophosphate glasses in which F–M–F, O–M–O– or F–M–O– bonds may occur, have the degree of covalence between phosphate and fluoroborate glasses. When concentration of Mn$^{2+}$ ion increases, the covalency between ligand and Mn$^{2+}$ decreases and takes place change of ligands coordination around manganese ions, which cause spectral shifts.

3.2 Absorption properties

Absorption spectra of the 45BaB$_2$O$_4$–55BiF$_3$ and the 45BaB$_2$O$_4$–55PbF$_2$ glass systems are shown in Figs. 3 and 4. The absorption band corresponding to the 4A$_2$(S) \rightarrow 2E$_g$(G) transition is the most intense. The absorption position with the maximum intensity for the investigated glasses is 24 320 cm$^{-1}$. In fluoroborate-, phosphate- and silicate glasses, the maximum intensity of absorption spectra occurs at approximately 25 200, 24 590–24 550 and 23 500–23 800 cm$^{-1}$, respectively [2, 7]. The second absorption band we are interested in is at 28 700 cm$^{-1}$ in fluorophosphate glasses, as shown in Fig. 3. The position of the absorption band is due to the 4A$_2$(S) \rightarrow 4T$_2$(G) transition and does not depend on the strength of the ligand field. In fluoroborate glasses, the position of the maximum is at 30 050 cm$^{-1}$, and in phosphate and silicate glasses they are at 28 800 and 28 000 cm$^{-1}$, respectively [2, 7]. The absorption bands, $T_{D}(G), of Mn^{2+}$ in glasses are shifted towards the longer wavelength of the spectrum with an increase in the degree of covalence of dopant–ligand bond [15].
The absorption bands, $4T_{1g}(G)$, of Mn$^{2+}$ for the 45Ba (PO$_4$)$_2$:55P$_2$O$_5$ and the 45Ba(PO$_4$)$_2$:55P$_2$O$_5$ glass systems are approximately 20,000 cm$^{-1}$. The maximum of absorption bands for the transition $4A_{2g}(S) \rightarrow 4T_{1g}(G)$ are 21150 cm$^{-1}$ for fluoroberyllate and 1950–19800 cm$^{-1}$ for phosphate and 15250–15550 cm$^{-1}$ for silicate glasses. Thus, it is reasonable to assume that the fluorophosphate glasses are close to the phosphate glasses in the degree of covalence of dopant-ligand bond. This is also confirmed by comparison with the Racah coefficient B for these glasses. The Racah coefficient B is an electrostatic parameter which is a measure of the interelectronic repulsion. The appearance of electrons in the 4s and 4p shells also produces lowering of the Racah coefficient B [16, 17]. A decrease in the Racah coefficient B can be used to infer an increase in the degree of covalency of manganese (dopant) with the surrounding ligands [18]. The coefficient B can be calculated from the Tanabe–Sugano equation [19]:

\[B = -\frac{\beta_{4s} + \beta_{4p}}{4\alpha} \]

(1)

The Racah parameter C was estimated to be 3614–3615 cm$^{-1}$ for current fluorophosphate glasses based on the Tanabe–Sugano equation [19]. In bisnath and lead containing fluorophosphate glasses $B = 625$ and 627 cm$^{-1}$, respectively. For fluoroberyllate, phosphate and silicate glasses, the parameter B is approximately 700, 620 and 600 cm$^{-1}$, respectively [7]. In the spectrum, there is a $T_{2g}(G)$ band, whose position depends on the strength of the ligand field. This makes it possible to compare the strength of the ligand field in glasses with various compositors for dopant ions with6 electrons [20]. According to our data, the energy differences between the terms $E_{2g}(G)$ and $T_{2g}(G)$ for the fluorophosphate glasses are approximately 4320 cm$^{-1}$ for the 45Ba(PO$_4$)$_2$:55P$_2$O$_5$ and the 45Ba(PO$_4$)$_2$:55P$_2$O$_5$ glass systems as shown in Figs. 3 and 4. For fluoroberyllate, phosphate and silicate glasses, the values are 4070, 4700 and 8280 cm$^{-1}$, respectively [14, 20]. The strength of the ligand field increases in the order of fluoroberyllate, fluorophosphate, phosphate and silicate glasses. Table 1 listed all the energies and parameters for the different types of glasses.

3.3 Electron spin resonance (ESR) spectra

The concentration dependence of ESR spectra was analyzed for Mn$^{2+}$ ions in the 45Ba(PO$_4$)$_2$:55P$_2$O$_5$ and 45Ba(PO$_4$)$_2$:55P$_2$O$_5$ glass systems. The character of the bond which exists between the ligand–glass forming agent and ligand–dopant ions plays an important role. The hyperfine splitting (HFS) constant for Mn$^{2+}$ ions is directly proportional to the number of ionic bonds in the ligand–dopant series [21–23]. In other words, the hyperfine splitting (HFS) constant A indicates the qualitative measure of the ionic degrees of probe ion–ligand bonding and is mainly affected by the electronegativity of the anion neighbor. Similarly, the cololvency between ligand and dopant (ligand–Mn$^{2+}$) decreases, where the magnitude of the HFS (A) increases. The hyperfine splitting (HFS) constant A for Mn$^{2+}$ ions in 45Ba(PO$_4$)$_2$:55P$_2$O$_5$ and 45Ba(PO$_4$)$_2$:55P$_2$O$_5$ glass systems was found to be 34.35 and 92.12 G, respectively. The resonance absorption line is mainly attributed to Mn$^{2+}$ ions in an environment close to octahedral symmetry distorted by tetragonally elongated nearest neighbor, as shown in Fig. 5. It is mainly due to spin–spin coupling.
between adjacent manganese ions [25]. Above 0.5 wt. % in Mn$^{2+}$ ion, the lines do not provide the resolved hyperfine structure in 45Ba(PO$_4$)$_2$-55BiF$_3$ glass system. Similar results can be achieved by comparing the hyperfine splitting (hfs) constant A of the investigated fluorophosphate ($A = 94.33$ and 92.12 Oe), with those of fluoroberyllate ($A = 96$ Oe) [20], phosphate ($A = 95$ Oe) [7], and silicate ($A = 89$ Oe) [7]. Consequently, upon the comparison hyperfine splitting (hfs) constant A, the investigated fluorophosphate systems is similar to the phosphate and fluoroberyllate glasses.

Figure 6 illustrates ESR spectra of Mn$^{2+}$ in both glassy (curves a and c) and crystalline (curves e and f) bismuth fluorophosphate. Some significant differences can evidently be observed in ESR spectra and the hfs constant A between the glassy and crystalline forms. The hyperfine splitting (hfs) constant A for the bismuth fluorophosphate is 94.33 Oe, but for its crystalline counterpart of the same composition, it is 89.98 Oe. Figure 6 shows the strength of the ligand field on Mn$^{2+}$ in crystalline samples is significantly higher than in glass. The hyperfine splitting (hfs) constant A in glass and crystalline glasses shows the difference between ligand and Mn$^{2+}$ ions (or any dopants) is increased (4 = 89.98 Oe). The results also indicate that the local structure in the vicinity of Mn$^{2+}$ ion in 45Ba(PO$_4$)$_2$-55BiF$_3$ glasses is similar to that of 45P$_2$O$_7$-55BiF$_3$ glass as shown in Figs. 5 and 6(a) and (b). It is, thus, concluded that the similarity of dopant-ligand bonding in different glasses (fluoroberyllate, fluorophosphates, phosphate, silicate, germanate, and others) lead to analogous spectrochemical and spec troscopic parameters.

4 Conclusions

Spectroscopic measurements have been performed for two new fluorophosphate glass systems containing bismuth oxide and lead, i.e., 45Ba(PO$_4$)$_2$-55BiF$_3$ and 45Ba(PO$_4$)$_2$-

<table>
<thead>
<tr>
<th>Fluoroberyllate</th>
<th>Phosphate</th>
<th>Silicate</th>
<th>Fluorophosphate</th>
</tr>
</thead>
<tbody>
<tr>
<td>E_{1g}^+ (GJ)</td>
<td>25200</td>
<td>24550-24550</td>
<td>25500-25800</td>
</tr>
<tr>
<td>E_{2g}^+ (GJ)</td>
<td>30850</td>
<td>28550</td>
<td>28900</td>
</tr>
<tr>
<td>F_{2h} (GJ)</td>
<td>21150</td>
<td>19750-19850</td>
<td>15720-15850</td>
</tr>
<tr>
<td>$g = 0.8$</td>
<td>0.70</td>
<td>0.62</td>
<td>0.60</td>
</tr>
<tr>
<td>$g = 0.6$</td>
<td>8.1</td>
<td>7.2</td>
<td>6.9</td>
</tr>
</tbody>
</table>

TABLE 1 Relative comparisons of different bands and nephelauxetic effects in fluoroberyllate, phosphate, silicate and fluorophosphate glasses.

References [14] [7] [7] Current work

FIGURE 5 ESR spectra of Mn$^{2+}$ in 45Ba(PO$_4$)$_2$-55BiF$_3$ glass system: (a) 0.05 wt. %, (b) 0.1 wt. %, (c) 0.5 wt. %, (d) 1.0 wt. %, and (e) 2.0 wt. % MnF$_2$ [7]

FIGURE 6 ESR spectra of Mn$^{2+}$ in 45P$_2$O$_7$-55BiF$_3$ system: (a) 0.05 wt. % MnF$_2$ in glass system and (b) 0.05 wt. % MnF$_2$ in crystalline system
55PrF₄. It has been found that an increase in the concentration of MnF₂ leads to a shift in the broadband emission spectrum towards a longer wavelength region. For both glasses, Racah coefficients B have been determined to be 625 and 627 cm⁻¹ and the hyperrfine splitting (hfs) constants A for Mn²⁺ ions have been found to be 94.33 and 92.12 Oe, respectively. The strength of the ligand field increases in the order of fluoroberyllate, fluophosphate, phosphate and silicate glasses. It is assumed that the fluophosphate glasses are close to the phosphate glasses in the degree of covalence of the dopant-ligand bond based on Racah coefficients B and the position of 5ν₃(G) band. The ligand field in the glassy and crystalline 45P₂O₅–55BiF₄ has been investigated through ESR spectra of Mn²⁺. The hyperrfine splitting (hfs) constant A is found to be 89.98 Oe in the crystalline 45P₂O₅–55BiF₄ and 94.33 Oe in glassy 45P₂O₅–55BiF₄. It is found that the crystallization of the glass leads to an increase in the bond of covalency between ligand and Mn²⁺ ions.

REFERENCES